Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 3(6): 919-927, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110252

RESUMO

Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Tamanho Corporal , Comportamento Predatório , Vertebrados
2.
PLoS One ; 6(6): e21265, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701576

RESUMO

Epi-macrobenthic species richness, abundance and composition are linked with type, assemblage and structural complexity of seabed habitat within coastal ecosystems. However, the evaluation of these habitats is highly hindered by limitations related to both waterborne surveys (slow acquisition, shallow water and low reactivity) and water clarity (turbid for most coastal areas). Substratum type/diversity and bathymetric features were elucidated using a supervised method applied to airborne bathymetric LiDAR waveforms over Saint-Siméon-Bonaventure's nearshore area (Gulf of Saint-Lawrence, Québec, Canada). High-resolution underwater photographs were taken at three hundred stations across an 8-km(2) study area. Seven models based upon state-of-the-art machine learning techniques such as Naïve Bayes, Regression Tree, Classification Tree, C 4.5, Random Forest, Support Vector Machine, and CN2 learners were tested for predicting eight epi-macrobenthic species diversity metrics as a function of the class number. The Random Forest outperformed other models with a three-discretized Simpson index applied to epi-macrobenthic communities, explaining 69% (Classification Accuracy) of its variability by mean bathymetry, time range and skewness derived from the LiDAR waveform. Corroborating marine ecological theory, areas with low Simpson epi-macrobenthic diversity responded to low water depths, high skewness and time range, whereas higher Simpson diversity relied upon deeper bottoms (correlated with stronger hydrodynamics) and low skewness and time range. The degree of species heterogeneity was therefore positively linked with the degree of the structural complexity of the benthic cover. This work underpins that fully exploited bathymetric LiDAR (not only bathymetrically derived by-products), coupled with proficient machine learner, is able to rapidly predict habitat characteristics at a spatial resolution relevant to epi-macrobenthos diversity, ranging from clear to turbid waters. This method might serve both to nurture marine ecological theory and to manage areas with high species heterogeneity where navigation is hazardous and water clarity opaque to passive optical sensors.


Assuntos
Invertebrados/classificação , Biologia Marinha/métodos , Animais , Biodiversidade , Canadá , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...